Evaluation of a metal artifacts reduction algorithm applied to postinterventional flat panel detector CT imaging.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Flat panel detector CT images are degraded by streak artifacts caused by radiodense implanted materials such as coils or clips. A new metal artifacts reduction prototype algorithm has been used to minimize these artifacts. The application of this new metal artifacts reduction algorithm was evaluated for flat panel detector CT imaging performed in a routine clinical setting. MATERIALS AND METHODS Flat panel detector CT images were obtained from 59 patients immediately following cerebral endovascular procedures or as surveillance imaging for cerebral endovascular or surgical procedures previously performed. The images were independently evaluated by 7 physicians for metal artifacts reduction on a 3-point scale at 2 locations: immediately adjacent to the metallic implant and 3 cm away from it. The number of visible vessels before and after metal artifacts reduction correction was also evaluated within a 3-cm radius around the metallic implant. RESULTS The metal artifacts reduction algorithm was applied to the 59 flat panel detector CT datasets without complications. The metal artifacts in the reduction-corrected flat panel detector CT images were significantly reduced in the area immediately adjacent to the implanted metal object (P = .05) and in the area 3 cm away from the metal object (P = .03). The average number of visible vessel segments increased from 4.07 to 5.29 (P = .1235) after application of the metal artifacts reduction algorithm to the flat panel detector CT images. CONCLUSIONS Metal artifacts reduction is an effective method to improve flat panel detector CT images degraded by metal artifacts. Metal artifacts are significantly decreased by the metal artifacts reduction algorithm, and there was a trend toward increased vessel-segment visualization.
منابع مشابه
Evaluation of Metal Artifact Reduction software in Computed Tomography
Introduction: The image quality of computed tomography (CT) can be seriously lowered by metal implants of patients. These implants are known to exert a significant impact on diagnostic accuracy due to artifacts. The current study aimed to assess the usefulness of Metal Artifact Reduction (MAR) software in the reduction of metal artifacts, in comparison to iterative rec...
متن کاملAn Efficient Ring Artifact Reduction Method Based on Projection Data for Micro-CT Images
Ring artifacts are very troublesome in a flat-panel based micro computed tomography (micro-CT) since they might severely degrade visibility of the micro-CT images. Unlike ring artifacts in other types of micro-CTs such as image-intensifier based micro-CT, ring artifacts in a flat-panel detector based micro-CT are hardly removable since the sensitivity of the pixel elements in a flat-panel detec...
متن کاملA Ring Artifact Correction Method: Validation by Micro-CT Imaging with Flat-Panel Detectors and a 2D Photon-Counting Detector
We introduce an efficient ring artifact correction method for a cone-beam computed tomography (CT). In the first step, we correct the defective pixels whose values are close to zero or saturated in the projection domain. In the second step, we compute the mean value at each detector element along the view angle in the sinogram to obtain the one-dimensional (1D) mean vector, and we then compute ...
متن کاملArtifact reduction of different metallic implants in flat detector C-arm CT.
BACKGROUND AND PURPOSE Flat detector CT has been increasingly used as a follow-up examination after endovascular intervention. Metal artifact reduction has been successfully demonstrated in coil mass cases, but only in a small series. We attempted to objectively and subjectively evaluate the feasibility of metal artifact reduction with various metallic objects and coil lengths. MATERIALS AND ...
متن کاملMetal artifact reduction for flat panel detector intravenous CT angiography in patients with intracranial metallic implants after endovascular and surgical treatment
BACKGROUND Flat panel detector CT angiography with intravenous contrast agent injection (IV CTA) allows high-resolution imaging of cerebrovascular structures. Artifacts caused by metallic implants like platinum coils or clips lead to degradation of image quality and are a significant problem. OBJECTIVE To evaluate the influence of a prototype metal artifact reduction (MAR) algorithm on image ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 35 11 شماره
صفحات -
تاریخ انتشار 2014